Die Geometrische Ableitung am Beispiel der Maxwell-Gleichungen

Martin Erik Horn

Abstract


Die Differentialrechnung stellt ein entscheidendes konzeptuelles Werkzeug zur mathematischen Beschreibung physikalischer Sachverhalte dar. Gleichzeitig liefert die Physik ein wesentliches Motivationsmuster zur konzeptuellen Weiterentwicklung der Mathematik. Newton und Leibniz schufen die Differentialrechnung gerade auch aus physikalischen Gründen.

Der von Newton und Leibniz vorgenommenen Algebraisierung der Differentialrechnung stellt die Geometrische Algebra eine geometrische Einbettung zur Seite. Am Beispiel ebener elektromagnetischer Wellen als Lösungen der Maxwell-Gleichungen im Vakuum wird gezeigt, wie eine solche geometrisch-algebraische Umformung der Differentialrechnung physikalische Problemstellungen aufklärt.

Ebenso wird diskutiert, wie diese physikalisch motivierte Umformung der Differentialrechnung auf die Mathematik zurückwirkt, wenn diese physikorientierte Konzepte wie den Dirac-Operator zur eigenen Konzeptbildung übernimmt.

 


Schlagworte


Geometrische Algebra; Differentialrechnung; Dirac-Operator



© 2010-2016 Internetzeitschrift: PhyDid B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung (ISSN 2191-379X) - Einstiegsseite