General relativity in German secondary schools

Ute Kraus, Corvin Zahn, Magdy Moustafa

Universität Hildesheim, Institut für Physik, Universitätsplatz 1, 31141 Hildesheim
ute.kraus@uni-hildesheim.de, corvin.zahn@uni-hildesheim.de, magdy27@hotmail.de

Abstract
This contribution describes the status quo of the incorporation of general relativity into physics classes at secondary schools in Germany. Secondary school (Gymnasium) curricula and university curricula for pre-service physics teachers (Lehramt Gymnasium) are analyzed with respect to instructional goals related to general relativity. The study includes the secondary school curricula of all 16 federal states and the university curricula of 50 universities nationwide. The general relativity content of the curricula is discussed, with a view to current physics education research on teaching general relativity at secondary school level.

1. Introduction
Relativity is one of the fundamental advancements of physics in the 20th century, the other being quantum physics. However, while quantum physics and special relativity are well established in secondary school, the same is not yet true for general relativity.

To establish the status quo of general relativity in physics classes in German secondary schools, we analyze the school curricula (Gymnasium) of the 16 federal states. We also study to what extent teachers are proficient in general relativity by analyzing the course descriptions of pre-service physics teacher education at German universities. We close with an outlook on current developments in design and testing of educational resources for teaching general relativity in secondary schools.

2. General relativity in secondary school
We have studied physics curricula with a view to the teaching of general relativity in German schools. School curricula being within the responsibility of the federal states, the study includes the curricula of all 16 states. We focus on curricula for the Gymnasium (a secondary school with grades 5 to 12 or 13, i. e., ages 10 to 17 or 18, leading to a general qualification of university entrance), since we do not expect this subject to be taught in other types of school.

The school curricula were downloaded from the official websites of the ministries of education of the 16 federal states. Supplementary documents (guidelines, model implementations) were studied where available. The documents are as at December 2017.

The general relativity content of the school curricula is summarized in tables 1 and 2. We find that four out of the 16 secondary school (Gymnasium) curricula explicitly mention general relativity as a subject taught in physics classes. In one case (Saarland), only the keyword general relativity is mentioned, as a recommended addendum to a unit on electromagnetism. This case will not be considered further. In the other three states (Bremen, North Rhine-Westphalia, Saxony), there are dedicated units on general relativity with time frames of 2, 4, 6, and 8 lessons (à 45 minutes), respectively (where in the case of Saxony, 2 and 4 lessons, respectively, are estimates based on the assumption that the time for the unit on relativity is divided equally between special and general relativity). In all three cases, general relativity is scheduled for grade 11 or grade 12 and is part of the advanced level course, only in Saxony it is part of the standard level course, too. In North Rhine-Westphalia and Saxony, general relativity is a required subject in the advanced level course.

Comparing the descriptions given in the three curricula, we find that there is a single common topic, referred to as gravitational time dilation, gravitational redshift, or experiments with atomic clocks, respectively. Topics mentioned in two out of the three curricula are the equivalence principle and the curvature of space or spacetime. Several keywords are found in only one out of the three curricula: light deflection, precession of the perihelion of Mercury, black holes, big bang theory, impact on physical world view. In conclusion, the topics to be covered strongly differ between the states, and a consensus on the content of a first short introduction to general relativity is not apparent.

In the curricula of several federal states, there are time frames with topics at the teachers’ discretion. This provides additional possibilities for teaching general relativity. From personal contacts we know that this possibility is used but cannot estimate to what extent.
3. General relativity in pre-service teacher education

Since teachers’ proficiency in a subject is a prerequisite for its teaching in school, we also study the role of general relativity in pre-service teacher education. Fifty German universities nationwide offer pre-service teacher education (Gymnasium) in physics ([7]), see the appendix for a list. They are all included in this study. Study and examination regulations, academic guides, and handbooks of modules were downloaded from the official websites of these universities. The documents are as at July 2017.

The general relativity content of the studies of pre-service physics teachers is summarized in tables 3 and 4. Where relativity was mentioned in a module description, but without further details and not qualified as either "special" or "general", we took this to mean special relativity. This concerns physics education modules on modern physics at U Bayreuth, KIT Karlsruhe, U Köln, and U Oldenburg. These are not included in the tables. We find that nine universities offer general relativity for pre-service physics teachers. In three cases (U Bremen, U Kaiserslautern, U Koblenz-Landau), general relativity is mentioned as a single keyword.

Table 1: General relativity in secondary school, as a required subject. (GR: general relativity, SR: special relativity, SL: standard level (Grundkurs), AL: advanced level (Leistungskurs), lesson: à 45 minutes)

<table>
<thead>
<tr>
<th>State</th>
<th>Grade & Level</th>
<th>Designation of the class</th>
<th>GR topics covered</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Rhine-Westphalia (NRW)</td>
<td>11/12 AL</td>
<td>Relativity (SR and GR), total: 24 / GR: 8 lessons ([2/])</td>
<td>Basic statements of GR: gravitational time dilation, equivalence principle; Gravitation and time measurement (describe qualitatively); gravitation, time measurement and curvature of space (illustrate using models and graphics); impact on physical world view</td>
<td>[1]</td>
</tr>
<tr>
<td>Saxony</td>
<td>11 AL</td>
<td>Introduction to relativity (SR and GR), 8 lessons</td>
<td>Selected aspects of GR: gravitation and curved spacetime, experiments with atomic clocks, black holes in the universe, big bang theory</td>
<td>[3]</td>
</tr>
</tbody>
</table>

Table 2: General relativity in secondary school, as an optional subject. (GR: general relativity, SR: special relativity, SL: standard level (Grundkurs), AL: advanced level (Leistungskurs), lesson: à 45 minutes)

<table>
<thead>
<tr>
<th>University</th>
<th>Level</th>
<th>Designation of module</th>
<th>GR topics in module description</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Bremen</td>
<td>M</td>
<td>Theoretical physics 2: mechanics and relativity, 6 credits, 4 SWS</td>
<td>Fundamental aspects of GR</td>
<td>[8]</td>
</tr>
<tr>
<td>U Kaiserslautern</td>
<td>B</td>
<td>Theoretical physics 1: mechanics, electrodynamics, 8 credits, 6 SWS</td>
<td>GR</td>
<td>[9]</td>
</tr>
<tr>
<td>U Stuttgart</td>
<td>B</td>
<td>Relativity, astrophysics, cosmology, 6 credits, 6 SWS</td>
<td>Steilkurs GR, classic tests in the solar system, double pulsar 1913+16, gravitational waves, cosmology based on GR (solution of the field equations, cosmological redshift, models with cosmological constant)</td>
<td>[10]</td>
</tr>
</tbody>
</table>

Table 3: General relativity in pre-service teacher education, as a required subject. (GR: general relativity, credits: ECTS credit points, SWS: lessons per week (à 45 minutes, for 15 weeks), B: Bachelor studies, M: Master studies)

The general relativity content of the studies of pre-service physics teachers is summarized in tables 3 and 4. Where relativity was mentioned in a module description, but without further details and not qualified as either "special" or "general", we took this to mean special relativity. This concerns physics education modules on modern physics at U Bayreuth, KIT Karlsruhe, U Köln, and U Oldenburg. These are not included in the tables. We find that nine universities offer general relativity for pre-service physics teachers. In three cases (U Bremen, U Kaiserslautern, U Koblenz-Landau), general relativity is mentioned as a single keyword.
with no further details, as part of a theoretical physics course on mechanics and electrodynamics. These cases will not be considered further. There remain six universities that offer courses with a substantial general relativity content. The courses are partly on the level of the Bachelor studies (4 cases) and partly of the Master studies (2 cases). In four universities (U Bonn, U Dortmund, U Jena, U Konstanz), pre-service physics teachers can take a standard general relativity course as an optional course. The time frames of these courses vary between 30 lessons and 90 lessons (at 45 minutes), where in the case of U Jena the time frame for general relativity was estimated to be half the course. The remaining two universities combine general relativity with other topics. In the case of U Stuttgart, general relativity is combined with astrophysics and cosmology. In the case of U Tübingen it is part of a course on classical field theory. From the course description, we roughly estimate 30 lessons as the time frame for general relativity in both cases. U Stuttgart stands out with a course that has a substantial general relativity content and is a required course (for students with physics as the major subject of their Bachelor studies).

<table>
<thead>
<tr>
<th>University</th>
<th>Level</th>
<th>Designation of module</th>
<th>GR topics in module description</th>
<th>Ref</th>
</tr>
</thead>
</table>
Germany and internationally, e. g. in Korea, Norway, and Scotland. Concurrently, there is increasing activity in physics education research on the teaching and learning of general relativity in school. This is partly triggered by the increasing role of general relativity in school curricula, and partly based on the conviction that general relativity is a fundamentally important part of the contemporary physical world view that every student should have the opportunity to get acquainted with.

Examples of recent work in general relativity education research include

- an online module designed for Norwegian upper secondary schools ([18]), also available online in English at [19]
- a course for secondary school students centered on student activities using models and analogies ([20], [21])
- courses for secondary school and pre-service teacher education based on the true-to-scale representation of curved spacetimes by sector models ([22], [23], [24]), with teaching resources available online at [25].

An important issue is pre-service teacher education in general relativity. Standard courses in general relativity are aimed at future theoretical physicists and involve learning an extensive mathematical apparatus. Since pre-service teachers in Germany study two subjects plus education science, the time available for studying physics will as a rule not allow for such a comprehensive general relativity course. Teacher education requires a shorter course, focussed on conceptual understanding and on the significance of relativistic phenomena in physics and astrophysics. Physics education research into this question should greatly help to pave the way for establishing general relativity in secondary schools.

Information on any omissions or mistakes in the data presented in this overview is very welcome.

5. References

[2] (NRW) QUA-LIS NRW, Physik, Inhaltsfeld: Relativitätstheorie (LK), 2014 (Umsetzungsbeispiel schulinterner Lehrplan)
[8] (U Bremen) Physik für das Lehramt an Gymnasien und Oberschulen, Webseite des Instituts für Didaktik der Naturwissenschaften, Modul TP L2, Stand 5.4.2013
[9] (U Kaiserslautern) Studienanleitung Lehramt Physik (u.a.), WiSe 2016/17, Modul TP1
[10] (U Stuttgart) Modulhandbuch Studiengang Bachelor of Arts (Lehramt) Physik HF, Stand: 3.4.2017, module 59030
[15] (U Koblenz-Landau) Modulhandbuch Physik für Lehramtssstudiengänge, Stand: 15.9.2015, Modul 03PH1109
[16] (U Konstanz) Veranstaltungsverzeichnis und Vorlesungskommentar, FB Physik, WiSe 2016/17
Appendix