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Abstract 
 
In the early universe, the density reached the order of the Planck density. As a result, there were 
gravitational instabilities in which dimensional transitions occurred. It should be taken into account 
that the early universe consists only of photons and black holes. Photons are bosons. The quantum 
physical model for many bosons, such as photons, is the Bose gas model. Here we can study the 
dynamics of the early universe more accurately (Hans-Otto Carmesin (2020): The Universe Devel-
oping from Zero-Point Energy Discovered by Making Photos, Experiments and Calculations. Berlin: 
Verlag Dr. Köster). This research aims to determine and apply the critical densities of dimensional 
phase transitions in Bose gases with the use of a computer simulation. This new type of phase tran-
sitions could be used in the future to apply them to the horizon problem. This might accordingly 
lead to the solution of the problem without including a hypothetical entity such as the so called 
*inflation field*. The project is presented as an example for teamwork in an ensemble of projects in 
the field of quantum gravity that are carried out in a research club at our school. 

 

1. Introduction 
 
Since the Big Bang our universe expands, so that the 
light horizon becomes larger and is 4.5×1026 m large 
by now, although the light travel time amounts to only 
13.8 billion years. If we trace the development of the 
size of today's light horizon back in time with general 
relativity through the Friedmann-Lemaître equation 
to the Planck length lP, this length would be reached 
at a density which would be significantly larger than 
the Planck density ρP (see figure 1.1). Already below 
a light horizon of 0.000014524m the Planck density 
would be exceeded with this model. But since no den-
sity can be larger than the Planck density a calculation 
with the general relativity theory is insufficient, and 
describes only the range of the light horizon with a 
size of 0.000014524m to 4.5×1026m. 

  
Fig.1: Time back tracing of today's light horizon 
according to the Friedmann-Lemâitre equation. Both axes 
are logarithmically scaled 

The range between 1.616×10-35m and 0.000014524m 
cannot be modeled with the general theory of relativ-
ity, so that the dynamic factor of 
0.000014524m÷1.616×10-35m = 8.71616×1029 is not 
explained [Heeren et al., 2020]. 
Instead, another dynamic explains the rapid increase 
of the light horizon in the early universe. Quantum 
gravity allows to model dimensional phase transitions 
that can describe the missing factor below 
0.000014524m [Schöneberg and Carmesin, 2020]. 
Thus, after the Big Bang, the universe had a high spa-
tial dimension due to its high density. However, by 
increasing the distances, the density becomes lower, 
so that a gravitational instability occurs and a lower 
dimension becomes energetically more favorable. It 
follows that our three-dimensional space follows di-
rectly from the space dynamics. Dimensions D ≥ 3 
have already been experimentally proven [Lose et al., 
2018], [Zilberberg et al., 2018]. To accurately model 
space dynamics in the early universe, it is essential to 
include the composition of space. Instead of our pre-
sent heavy elementary particles, which did not exist 
in the early universe, the energy was present in pho-
tons and black holes. Since photons are bosons, a cal-
culation in the Bose gas model with consideration of 
interactions is reasonable. The goal of the project is 
to model the early universe by determining the critical 
densities of dimensional phase transitions in Bose-
gases and applying the critical densities to the time 
course of the universe. The project is particularly in-
teresting because the new insights into the early 
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universe may be purposeful in explaining the rapid 
increase in distances in the early universe. Further-
more, the phase transitions could be applied to the 
horizon problem so that it can be solved in the future. 

2.  State of Research 

2.1. Increase of distances in the early universe and 
the horizon problem 

In 1981 Alan Guth found out that in the early universe 
a fast increase of the distances by a factor of 1028 oc-
curred [Guth, 1981]. This time is called "cosmic in-
flation" since then. However, since it is not an infla-
tion of the space (lat. inflatus = expanded), but rather 
a rapid increase of the distances in the space, the term 
is inapplicable. In the publication Guth already points 
out that the enlargement of the distances in the early 
universe cannot be explained with usual physical con-
cepts. Also, the high degree homogeneity of the struc-
tures and isotropy of the background radiation cannot 
be justified with a simple expansion model by the 
Friedmann-Lemaître equation. That problem is called 
horizon problem. To explain the increase of distances, 
the hypothesis of an inflation field was later proposed 
[Nanopoulos et al., 1983]. According to this hypoth-
esis, space expanded by inflation due to a scalar field. 
The hypothesis of an inflation field with accompany-
ing expansion would explain the increase of distances 
by a Distance Enlargement Factor Z, however, such a 
field cannot serve as a justification for the increase of 
distances, since a justification is always the conse-
quence of a sound theory [Carmesin, 2020a], [Lipton, 
1993]. The inflationary field hypothesis does not fol-
low from generally accepted physical laws, nor have 
observations been made that would directly prove an 
inflationary field. 

2.2. Dimensions over three by quantum gravity 

Since the density in the early universe was very high, 
the modeling of the space dynamics must be quan-
tized. The early universe consisted of a binary fluid 
of photons and black holes [Carmesin, 2020b]. The 
differential equation (2.1) describes the quantized dy-
namics of a pair consisting of two dynamical masses 
𝑀$ j, each of which can be either black holes or pho-
tons. 
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The wave function Ψj(𝑟j) describes the position 𝑟j of 
a mass mj as a function of the neighboring mass Mj in 
the binary fluid [Carmesin 2020b, p. 200]. 
neighboring mass Mj in the binary fluid [Carmesin, 
2020b, p. 200]. 
The special feature of this differential equation (2.1) 
is that the kinetic energy term ℏ
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can be generalized for all Dimensions. The potential 
energy term can be generalized for all dimensions 

D ≥ 3. Thus, quantized space dynamics allows space 
dimensions beyond three. This suggests that our 
three-dimensional space is directly the result of space 
dynamics. The computationally possible dimensions 
D ≥ 3 have already been experimentally demon-
strated. For example, there are several scientific pro-
jects that have experimentally explored wave func-
tions in dimensions D ≥ 3 [Lose et al., 2018], [Zilber-
berg et al., 2018]. Accordingly, quantum objects do 
not only exist on paper beyond three dimensions. 

3. Method 

3.1. Energy between two adjacent objects in the 
early universe 

When the density was 1/2 ≥ 𝜌6D ≥ 1/9047 in the early 
universe, there was a binary fluid consisting of pho-
tons and black holes [Carmesin, 2020b, p. 144]. The 
entire energy of the universe was present in these par-
ticles. The goal is to calculate the energy EDj of a mass 
𝑚< j with an associated radius 𝑏>j acting on an adjacent 
mass 𝑀$ j with a radius 𝑎6j at a density 𝜌6D. Since the 
masses 𝑚< j and 𝑀$ j in the early universe can only be 
photons (p) and black holes (b), there are four possi-
ble cases for a pair j of two dynamical masses: 

• (bb) 𝑚< j and 𝑀$ j are black holes 

• (bp) 𝑚< j is a black hole and 𝑀$ j is a photon 

• (pb) 𝑚< j is a photon and 𝑀$ j is a black hole 

• (pp) 𝑚< j and 𝑀$ j are photons. 

The subject of this project is the analysis of the case 
(pp). Thus, the energy EDj between neighboring pho-
tons is calculated for different dimensions as a func-
tion of the density 𝜌6D in order to determine the most 
energetically favorable spatial dimension for each 
density	𝜌6D. 

3.2. Bose gas model 

Photons have an integer spin and are therefore bos-
ons. At thermal equilibrium, they satisfy the Bose-
Einstein distribution [Bose, 1924]. They have the spe-
cial property that they can overlap completely and 
thus occupy the same quantum mechanical position. 
The ideal Bose gas is the quantum mechanical equiv-
alent of the ideal gas for many bosons [Bose, 1924]. 

 
Fig.2: Bose gas with N photons in a hollow sphere with a 
homogeneous environment. 

homogeneous environment 

N = 12 photons 

hollow 
sphere 
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With an ideal gas, the interactions between particles 
are neglected. Phase transitions cannot be described 
with an ideal gas, because the interactions between 
the particles are responsible for them. Therefore, the 
bosons are modeled in the form of a quantum me-
chanical real gas. The interactions of the photons are 
combined to a resulting potential, in which the pho-
tons can interact independently. Since the interactions 
are gravitational, it is crucial that the modeling be 
done in a hollow sphere. In a hollow sphere with a 
homogeneous environment, no gravitational field 
from outside exists. Therefore, the hollow sphere is 
suitable to perform investigations with objects inside, 
which should not react to external gravitational ef-
fects. It is examined with this model, which dimen-
sion minimizes the energy in the Bose gas depending 
on the density. Since the model is a gas, a calculation 
of the gas pressure in dependence on the density for 
different dimensions is also purposeful. 
3.3. Energy term for a reference photon in a Bose 
gas 

The energy term of such a reference photon includes 
the kinetic energy Ekin, the potential energy Epot and 
the zero-point energy EZPE. To derive the energy term, 
we first need the radius 𝑎6 of a dynamical mass 𝑀$  at a 
density 𝜌6D. The dynamical mass 𝑀$  of a quantum ob-
ject is proportional to 1 ÷ 𝑎6. At the Planck length ap-
plies lP, 𝑀$ = 1 ÷ 2 [Carmesin, 2020b]. If you add 
both ratios together, you get: 

𝑀$ = (
"⋅12
	 	 for	radiation   {3.1} 

Converting to radius 𝑎6 by multiplying by 𝑀$  = 𝜌6D× 𝑎6D 
gives: 	
𝑎6 = (
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(
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The volume of the hollow sphere corresponds to 2D 
times the volume of a single particle. However, in or-
der for the density to remain constant, and not change 
with dimensional phase transitions, the number of 
possible states in the hollow sphere N must vary with 
dimension. It therefore follows for the model: 
𝑁 = 2'     {3.3} 
Now we can calculate the potential energy 𝐸>pot, the 
kinetic energy 𝐸>kin and the zero-point energy 𝐸>ZPE of 
the reference photon. Since the kinetic energy 𝐸>kin of 
a photon is equal to the Planck constant h divided by 
the periodic time T, the scaled kinetic energy 𝐸>kin is 
identical to its scaled mass 𝑀$: 

E$kin = 𝑀$ = (
"⋅12

    {3.4} 

Of special importance for the energy term is the po-
tential energy, because phase transitions are possible 
only by the gravitational interactions described by the 
potential energy phase transitions are possible. For 
the derivation of the potential energy Epot first the en-
ergy of the interaction of a pair of two objects with a 
mass M and a distance R is needed: 

𝐸pot(𝑅) = − GD⋅>!

('+")⋅?'+!
   {3.5} 

Converted into Planck units this corresponds to: 
𝐸>pot)𝑅>- = − >@!

?A'+!
    {3.6} 

We analyze one photon of the N photons in the center 
of the hollow sphere, this serves as a reference object. 
The other particles are randomly distributed in the 
hollow sphere - since it is a real Bose gas. The aver-
aged potential energy 𝐸>pot of a reference photon with 
the other photons is determined accordingly. It holds 
[Carmesin, 2020b]: 

𝐸>Tpot =
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Next, we insert equation (3.6). This gives: 
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If the integrals are calculated, we get: 

𝐸>Tpot = −𝑀$" ⋅ '
"
⋅ D̃
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Next, we insert equations (3.1) and (3.2). For the ra-
dius 𝑟̃ of the hollow sphere applies 𝑟̃ = 2 ⋅ 𝑎6: 

𝐸>Tpot = − '
"')(

⋅ (2 ⋅ 𝜌6')
F '
')(G   {3.10} 

With equation (3.10) we get the energy of the aver-
aged gravitational interaction 𝐸>pot of a photon to the 
surrounding photons depending on the density 𝜌6D for 
different spatial dimensions. Now that we have calcu-
lated the kinetic energy and the potential energy, all 
that is missing is the zero-point energy EZPE. The 
zero-point energy is characterized by harmonic oscil-
lators [Born and Jordan, 1925]. There are two main 
reasons for this. First, the quantized electromagnetic 
field is modeled by harmonic oscillators. Second, the 
harmonic potential of a zero-point oscillation is ena-
bled in a very good approximation by the high density 
[Carmesin, 2018], [Carmesin, 2019], [Carmesin and 
Carmesin, 2020]. For the harmonic oscillator, [Casi-
mir, 1948] holds: 

𝐸 = ℏ⋅H
"

  {3.11} 

Since photons are transversal waves, there is transver-
sal polarization. Therefore, there are D-1 polariza-
tions. It follows accordingly: 

𝐸ZPE =
ℏ⋅H
"
⋅ (𝐷 − 1)  {3.12} 

Converted into Planck units, it follows approxi-
mately: 

 𝐸>ZPE =
(
"
⋅ (𝐷 − 1)  {3.13} 

The averaged energy 𝐸>T of the reference photon in the 
bose gas can now be calculated adding up kinetic- 
(3.4), potential- (3.7) and zero-point-energy (3.13): 

𝐸>T = 𝐸>kin + 𝐸>ZPE + X
L+(
"
⋅ 𝐸>TpotY {3.14} 

The factor N-1 is given by the fact that the calculated 
potential energy so far describes the gravitational in-
teraction of two particles. Since there are N objects in 
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the Bose-gas, the potential energy must be corre-
spondingly valid for a reference photon with N neigh-
boring objects. Therefore, the potential energy 𝐸>pot 
for two particles is first halved, so that half is assigned 
to each particle. Then it is multiplied by N-1 to obtain 
the interaction of a reference photon for N photons. 
The subtrahend -1 results from the fact that the photon 
does not interact with itself. For the complete energy 
term, in addition to equations (3.4), (3.9) and (3.13), 
we add the radius r =  2 ⋅ 𝑎6 and equation (3.3) for the 
hollow sphere: 

𝐸>T = (
"12
+ ('+()

"
− (2' − 1) ⋅ Z '

"')(
⋅ (2 ⋅ 𝜌6')

F '
')(G[

     {3.15} 

3.4. Simulation of dimensional phase transitions 

The computer simulation of the model was initially 
done using the spreadsheet program Excel. However, 
using Excel is relatively impractical. For example, the 
range of density to be simulated cannot be easily ad-
justed, so that a small change is very time-consuming. 
Adjusting the formulas used is also time-consuming, 
as each adjustment must be made separately for each 
dimension. In order to automate the simulation and 
increase its accuracy, it was essential to switch from 
Excel to a programming language. Thus, the R lan-
guage was chosen for this project. R is an open-source 
scripting language for scientific and statistical calcu-
lations. Because of R's wide range of functions 
adapted to calculations, the simulation could not only 
be reproduced with R but also completely automated. 
The accuracy with which the calculation runs could 
also be improved. The most accurate simulation to 
date calculates the range between 0.44𝜌6D and 0.5𝜌6D 
in 60,000,000 steps. In the Excel calculation, this 
would correspond to 60,000,000 lines.  This accuracy 
is sufficient for the critical densities up to dimension 
33. In another calculation realized with R, the calcu-
lated critical densities are applied to the time course 
of today's light horizon. In doing so, the dimension is 
dynamically adjusted with the density as a function of 
time, so that a time course of the light horizon is cre-
ated that takes higher dimensions into account. 

4. Results 

4.1. Minimizing the pressure through a dimen-
sional transition 

Figure (3) shows the gas pressure 𝑝6 as a function of 
the density 𝜌6D for dimensions 3 and 4. At a low den-
sity, the third dimension minimizes the pressure. The 
simulation shows that at a very high density, the pres-
sures of the two dimensions converge until the dimen-
sions coincide at a point - the critical density. Above 
the critical density, the fourth dimension minimizes 
the pressure. This can be clearly seen in the figure. A 
principle in nature is that in a system basically the en-
ergetically lowest state is adopted. At low density, 
this is the third dimension. Starting from the critical 
density, however, the fourth dimension is 

energetically more favorable. Therefore, a dimen-
sional transition from the third to the fourth dimen-
sion follows together with a gravitational instability.  

 
Fig.3: Pressure 𝑝"̅ as a function of density 𝜌"D for dimen-
sion 3 and 4  

4.2. Dimensional condensation of photons 

The phase transitions occur largely analogously to 
condensation in the case of water. At very low den-
sity, water is present in gaseous form. A phase transi-
tion happens when the density is increased. At a crit-
ical point, the water becomes liquid. In the same way 
as for the dimensional phase transitions, the interac-
tions of the water molecules are also responsible for 
the condensation.  

  
Fig.4: Proportions of the gas  pressure 𝑝"̅ of a reference 
photon in the Bose gas as a function of density 𝜌"D. Potential 
pressure 𝑝̅pot, kinetic pressure 𝑝"̅kin and zero-point pressure 
𝑝"̅ZPE are added up in a staggered manner, respectively. 

  

Fig.5: Proportions of the averaged energy 𝐸&' of a reference 
photon in the Bose gas as a function of density 𝜌"D. 
Potential energy 𝐸&'pot, kinetic energy 𝐸&'kin and zero-point 
energy 𝐸&'ZPE are added up in a staggered manner, 
respectively. 

At very low density, kinetic energy also predominates 
in water. Due to the motion, the particles remain at a 
distance. However, if the molecules are close together 
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due to high density, hydrogen bonds occur and the 
particles attract each other due to the strong interac-
tion. Figure (4) illustrates the fractions of the aver-
aged pressure 𝑝6 as a function of the density 𝜌6D for the 
third dimension. The proportions are staggered and 
added on top of each other. 

The dimensional condensation in photons can be il-
lustrated as follows: 

 

 

 

Fig.6: One-dimensionally arranged particles 

 

 

 

 

 

Fig.7: Two-dimensionally arranged particles 

The particles in figure (6) are arranged one dimen-
sionally and attract each other with Epot and repel each 
other with Ekin. As the density is increased, Epot be-
comes larger than Ekin. Thus, small distances mini-
mize the energy. By a transition to a two-dimensional 
arrangement (figure (7)), these distances decrease 
correspondingly by increasing the number of directly 
neighboring particles. Therefore, above a critical den-
sity, a higher dimension or, in the case of water, the 
aggregate state change is energetically more favora-
ble. In contrast to water, photons of course do not 
form droplets at a transition; however, it is decisive 
that in both systems the symmetry changes at a tran-
sition. At a certain density, the Bose gas has the same 
pressure and energy, respectively, for dimensions 3 
and 4. Using computer simulation, we can determine 
that this critical density is 𝜌63,krit = 0.44097. Analogous 
to the dimensional phase transition from the third di-
mension to the fourth dimension, dimensional phase 
transitions to higher dimensions also occur as the den-
sity is further increased (Figure (8)).  

 
Fig.8: Pressure 𝑝"̅ as a function of density 𝜌"D for different 
dimensions 

The next dimensional phase transition from the fourth 
to the fifth dimension occurs at a critical density 𝜌64,krit 
of 0.45564. The subsequent critical density is 𝜌65,krit = 

0.47002. All dimensional transitions from the transi-
tion from the 18th to the 19th dimension occur at a 
critical density 𝜌6D in the interval of 0.49999 and 0.5. 
For example, the critical density 𝜌621,krit is 0.49999762. 
If we plot the dimension D as a function to the critical 
density 𝜌6D,krit we can directly see that the dimension 
increases with density (Figure (9)). 

 
Fig.9: Critical densities 𝜌"D,krit as a function of dimension D  

Concluding from this, there was a dimensional un-
folding sequence due to the high density in the early 
universe.  At the beginning the space of the universe 
was folded into a high space dimension. As described 
by the Friedman-Lemaître equation, there was a slow 
expansion so that the density decreased. Due to the 
decreasing density, eventually a lower space dimen-
sion became energetically more favorable and mini-
mized the pressure. A gravitational instability oc-
curred and the smaller space dimension was adopted. 
Subsequently, at the next critical density, space as-
sumed the next lower dimension, so that a series of 
dimensional transitions - each from a higher dimen-
sion D + s to a lower dimension - occurred. As men-
tioned, the process was also calculated using an R 
simulation. Figure (10) shows the corresponding time 
course with dimension transitions. This process con-
tinued until the third dimension was reached. Includ-
ing dimension transitions in the early universe, our 
third-dimension results directly from space dynamics. 
The Distance Enlargement Factor Z resulting from 
the dimension transitions is Z = 7.985698×1029. 

 
 
Fig.10: course of today's light horizon including dimen-
sional transitions. Both axes are logarithmically scaled 

4.3. Comparison to the “Cosmic Inflation”  

The dependency of the dimensions to the density 
gives a significant impulse for the modelling of the 
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distance enlargement in the early universe. So far, the 
rapid enlargement of the universe after the Big Bang 
is often explained by the inflation field hypothesis. In 
table 1 the model presented here is compared with the 
"cosmic inflation". 
 

Dimensional transi-
tions 

"Cosmic Inflation" 

The model presented 
here can be completely 
derived from general 
relativity and quantum 
physics. 

The "cosmic inflation" 
does not follow from 
known physical laws and 
has no theoretical basis. 
and is based on hypothe-
ses instead. 

Higher dimensions 
have already been 
demonstrated experi-
mentally. 

An inflation field that 
could have caused the 
cosmic inflation has not 
been experimentally con-
firmed. 

Distance increases due 
to dimensional transi-
tions satisfy the law of 
conservation of energy, 
since the volume does 
not change in these. 

With the "cosmic infla-
tion" there is the reheat-
ing problem. By the ex-
pansion of the distances 
the temperature would 
have decreased, so that it 
would be colder today. 

When explaining the 
distance enlargement 
with dimensional tran-
sitions, no parameter 
estimations are neces-
sary. 

To	 solve	 the	 reheating	
problem,	 further	 hypo-
thetical	 fit	 parameters	
have	to	be	used. 

Tab.1: Comparison of Dimensional Phase Transitions in 
Bose gases and Cosmic Inflation 

Against the background that an inflation field neither 
follows from physical laws, it is accordingly esti-
mated as a hypothesis [Tanabashi et al., 2018]. Along 
with this, for example, the reheating problem cannot 
be solved because the nature of cosmic inflation is un-
known. There is no empirical evidence for other hy-
potheses that contradict the inflation model, such as 
explaining the early universe with a variable speed of 
light [Albrecht and Magueijo, 1999]. The model pre-
sented here, on the other hand, can be derived directly 
from two very sound theories; quantum physics and 
gravity. By the described dimensional unfolding se-
quence, the distances have increased by a factor of 
7.985698×1029 without the space having expanded. 
Thus, for the justification of the increase of the dis-
tances in the early universe by a factor of 
8.71616×1029 the inflation field hypothesis must not 
be used any more, rather this factor results directly 
from the quantum gravity. Another advantage of the 
dimensional phase transitions is that these also 

explain how the light waves could thermalize the 
horizon of the expanding universe since the time of 
the Big Bang. The inflation hypothesis was developed 
not least because of the horizon problem. But also, the 
here calculated time course with dimension transi-
tions solves the horizon problem. This was the subject 
of the Jugend forscht project "Solution to the Horizon 
Problem" by Philipp Schöneberg. Here the calcula-
tions were already successfully applied to the horizon 
problem. The problem was thus solved [Schöneberg, 
2021]. 

5. Conclusion 

The subject was the investigation of the early uni-
verse with the help of dimensional transitions within 
the framework of a Jugend forscht project. Specifi-
cally, since the early universe consisted to a large ex-
tent of photons, this was done using a Bose gas. The 
aim was to find out how the spatial dimensions be-
have as a function of density and what implications 
this has for the dynamics of space. In order to answer 
this research question, a Bose gas was modeled with 
which the energy in the gas and the gas pressure can 
be determined as a function of the density. The calcu-
lation has taken the form of a computer simulation us-
ing R. It shows that the dimensions depend on the 
density and increase with increasing density. The 
transition from one dimension to another dimension 
takes place by the concept of a condensation. Finally, 
the results show that there was a dimensional unfold-
ing sequence in the early universe due to the decreas-
ing density 𝜌6D originating from the expansion. This 
provides an important input to the study of the early 
universe. Along with the dimensional unfolding, the 
distances became larger by a factor of 
7.985698×1029. This dynamic makes the hypothesis 
of an inflationary field unnecessary, as the problem 
has already been solved by quantum gravity. In con-
trast to the inflation field hypothesis, the model pre-
sented here is completely derived from known laws 
of physics. Furthermore, the model also solves the 
horizon problem. In the future, the simulation can be 
improved to optimize the model. 
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