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Kurzfassung 

In dem folgenden Artikel möchten wir ein Problem der allgemeinen Relativitätstheorie lösen. Die-

se Lösung verlässt den Makrokosmos und nutzt den Mikrokosmos, um zu erklären wie sie funkti-

oniert. Um diese Lösung genauestens zu erläutern werde wir einige Formeln, Berechnungen, Mo-

delle, Tabellenkalkulationen und Diagrammen zeigen und erklären. Zum Schluss zeigen wir die 

Lösung mit Ergebnissen von realen physikalischen Größen. 

 

Abstract 

In the following article we will solve a problem of the general relativity theory. This solution will 

leave the macrocosm and use the microcosm to explain how it works. For this we also show and 

explain formulas, calculations, models, spreadsheets and diagrams. At the end we will show our 

results in shape of real physical quantities. 

 

1. Introduction 

No density can be larger than the Planck density ρP = 

5,155·10
96

 
𝑘𝑔

𝑚3. The time evolution of the actual light 

horizon should be traced back until the Planck 

length LP = 1.616·10
-35

 m is reached. However, there 

arises a problem, as the framework of general rela-

tivity theory, GRT, that length LP is only reached at 

the density ρ = 6·10
214

 
𝑘𝑔

𝑚3. (Carmesin 2019, Carme-

sin 2020). We present a solution to this model. We 

illustrate this solution with several model experi-

ments. Additionally, we derive the correct solution 

by using EXCEL in a graphic manner. So we 

achieve a comprehensive understanding based on 

our own activity. 

2. The light horizon 

2.1 The evolution of the light horizon 

First we will show you where and when the universe 

was folding up. At the blue part of the diagram you 

can see when the universe had unfolded. (Figure 1).  

 

Figure 1: The time evolution of the light horizon 

Here we can see the radius (r) in meters (m) to the 

time (t) in the Planck time (tP) from the light hori-

zon. If we look at this diagram the graph is the radi-

us of the light horizon. This means we can see the 

time evolution of the light horizon. But if we follow 

the light horizon until the Planck density (ρP) you 

can see the problem that the radius isn´t the Planck 

length (LP). So the universe could not become 

smaller because the Planck density is still reached. 

In the theory we use, the universe was folded up so 

that it could reach the Planck length. But by expand-

ing the universe has to unfold and to change the 

dimension into the lowest energy needed dimension. 

This means it give a distance enlargement like on a 

folded paper which you unfold. This means that two 

points which were opposite of the other, now are 

very far away from each other. We will show you 

how we can calculate the distance enlargement be-

tween two dimensions. 

3. Geometry of higher dimension 

3.1 Hyper cubic model  

Now we explain the model which we will use to 

calculate the distance enlargement. It´s the hyper 

cubic model. This model shows the light horizon not 

as a ball rather as a cube with the same edge length 

as the radius of the ball (figure 2&3). Important to 

say is that it isn´t a problem that we use a model of a 

cube, and not of a ball, because the distance en-

largement is applicable at both, and it doesn´t make 

a different at the results. 
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Figure 2: The model in the ball of the light horizon 

 

Figure 3: The model in the ball of the light horizon  

In the following Picture (figure 2) we can see an 

example of how the cube function like. 

 

Figure 4: Example for the construction of the hyper cubic 

model 

To use this model, we need some variables. The first 

variable is the dimension for which we use the sym-

bol D. We also need a variable for the edges to de-

termine the radius of each dimension in the model, 

so we use 𝐧𝐃 for all balls at one edge in a dimen-

sion. All balls in the model are N, so N is the vol-

ume of the dimension. In our example we have eight 

balls this means that the volume is eight. We can 

calculate N if we use D as exponent for 𝐧𝐃. So our 

formula is 

N = nD
D   {1} 

4. Enlargement factor 

4.1 Calculation of the formula 

Now you understand the model and some variables 

with which we can figure out how big the volume of 

a dimension in the model will be. But for figure out 

how big the distance enlargement between two di-

mensions will be, you need to know some variables 

more. First we will explain the new variable s we 

can set it free and use it to scale the dimensions (D), 

like we want. Also we need the factor of the distance 

enlargement which is our goal, it has the symbol 

𝑧𝐷−𝑠⇒𝐷 This factor shows the distance enlargement 

(Z) from a changing dimension (D-s) to the new 

dimension (D). In the following calculations we will 

never use D rather every time D-s because we don´t 

will get the result for one dimension rather the for a 

changing dimension. We know that it is possible to 

calculate Z with this formula: 

zD+s⇒D =
nD

nD+s
   {2} 

This is because, if we divide the edge of one dimen-

sion with the same edge of another dimension which 

have the same body, like in our model a cube, we get 

the similarity factor k which is in this situation the 

same like 𝑧𝐷−𝑠⇒𝐷. So it also shows the distance 

enlargement. But the problem is that for the formula 

{2} we need to know the length of the edges of two 

dimensions, but we only know the edge length of the 

301th dimension which is the highest dimension. 

This is because, if we follow the light horizon back-

wards and the universe fold up, the highest dimen-

sion has to have an edge length of two balls because 

it isn´t possible that a construction of two fold up to 

a lower number of balls. So we can´t use this formu-

la and have to calculate a new one. 

We start by defining the term of the edge length of 

one dimension and the term of the edge length of the 

changing dimension similar because, if we set the 

factor s at zero it is the same. 

nD
D = nD+s

D+s    {3} 

Here we add the exponent one divided by D to get 

the left term free from the exponent. 

nD = n
D+s

D+s

D     {4} 

Now we have the dividend of the formula {2} at the 

left side so we can set the new term in the equation 

{2}. 

zD+s⇒D =
nB+s

D+s
D

nD⊢s
=

nD+s⋅nD+s

s
D

nD+s
  {5} 

Now we only have to short the break to get a new 

better equation. So we short the nD+s away and get 

44



Solution of a Density Problem in the Early Universe 

this equation which we can use with only one known 

edge length. 

zD+s⇒D = nD+s

s

D    {6} 

5. Calculation of the enlargement factor 

5.1 Calculation 

Now we have all important variables and formulas 

to calculate the distance enlargement for all dimen-

sions, but first we have to set the constants which we 

will use or which are important. (Figure 5). 

 

Figure 5: The constants of the spreadsheets 

So we´ve set the constant D for the current dimen-

sion because it´s the end of the tabular, the maxi-

mum dimension 𝐷𝑚𝑎𝑥 which is the 301th and the 

edge length of 𝐷𝑚𝑎𝑥 , 𝑛𝐷𝑚𝑎𝑥
. We also set s to 1 and 

LP which is the Planck length. Why we need the 

Planck length we will explain later. Now we could 

calculate the first column (Figure 6). 

 

Figure 6: The dimension spreadsheet 

First we have calculated the dimensions because 

they scale the rest of the tabular. For this we only 

have s subtracted by D so the dimensions are scaled 

by 1. Now we can calculate the next value but first 

we have to decide which one. To calculate the edge 

length of a dimension, we need the distance en-

largement of the dimension which is before and to 

calculate the distance enlargement of a dimension 

we need the edge length of the same dimension. 

Because we only know the edge length of the 301th 

dimension we can only start by calculating the dis-

tance enlargement of the same dimension (figure 7). 

  

Figure 7: The spreadsheets to calculate the rest 

To calculate 𝑧𝐷−𝑠⇒𝐷 we only have to set the correct 

numbers in the formula {6}. Now because we know 

the distance enlargement, we be able to calculate the 

edge length of the next dimension and with this we 

can repeat the method to calculate the distance en-

largement. Because with this method we every time 

have one quantity to calculate the other, we be able 

to calculate the values for every dimension. Here in 

the following pictures you can see some sectors 

(figure 8, 9, 10). 

 

Figure 8: Sectors of the spreadsheets solution 

 

Figure 9: Sectors of the spreadsheets solution 

 

Figure 10: Sectors of the spreadsheets solution 

Here in the following diagram (figure 11) you can 

see how big the edge length in which dimension is, 

so you can assess how big the distance enlargement 

will be. 

 

Figure 11: The dimensional distance enlargement 

Now we know the distance enlargement and the 

edge length of every dimension. So we had calculat-

ed the solution of the problem. 

6. Critical radii 

6.1 Comparing 

Now we are finished with getting the solution of the 

Problem, but we also will show you a proof that the 

theory we use function and can be used at a sensible 

extension of the three dimensional macrocosm, so 
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we also will calculate the radius in meters to each 

dimension. For this we only have to multiply the 

edge length which is the number of balls in one 

dimension with the Planck length (figure 12) to get 

the critical radii of each dimensions. Critical radii 

are the radii of a dimension in which the dimension 

will be change in another. 

 

Figure 12: A sector of the spreadsheets of the critical radii  

If we compare the critical radius of the third dimen-

sion which we have calculated in our theory (figure 

13) with them of L. Heeren, P. Sawitzki and H.-O. 

Carmesin (figure 14). 

 

Figure 13: The spreadsheets of the critical radius of the 

third dimension 

 

Figure 14: The radius result from L. Heeren, P. Sawitzki 

and H.-O. Carmesin 

We see that they are nearly the same so we can con-

nect the theory of the macrocosm with the by us 

used theory of the microcosm. To explain a solution 

for a problem of the general relativity theory. 

7. Discussion 

The expansion of space according to the general 

relativity theory cannot explain the whole expansion 

of the light horizon ranging from the Planck length 

to the light horizon. This is shown in a parallel re-

port by Heeren, Sawitzki and Carmesin. Instead, a 

different dynamics caused a rapid increase of the 

distances by a factor of approximately 10
28

 (Guth 

1981). Here we model this enlargement by dimen-

sional transitions ranging from D = 301 to D = 3. 

This project was elaborated in a research club with 

classes ranging from 9 to 12. The results can directly 

be used in classes or courses. 
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